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The study of phenomena such as capillary displacement in porous media, fracture propagation, and interface
dynamics in quenched random media has attracted a great deal of interest in the last few years. This class of
problems does not seem to be treatable with the standard theoretical methods, and the only analytical results
come from scaling theory or mapping, for some of their properties, to other solvable models. In this paper a
recently proposed approach to problems with extremal dynamics in quenched disordered media, named run
time statistics~RTS! or quenched-stochastic transformation, is described in detail. This method allows us to
map a quenched dynamics such as invasion percolation onto a stochastic annealed process with cognitive
memory. By combining RTS with the fixed scale transformation approach, we develop a general and system-
atic theoretical method to compute analytically the critical exponents of invasion percolation, with and without
trapping, and directed invasion percolation. In addition we can also understand and describe quantitatively the
self-organized nature of the process.@S1063-651X~96!07207-8#

PACS number~s!: 02.50.2r, 05.40.1j, 05.90.1m

INTRODUCTION

The study of extremal dynamical processes with
quenched disorder has attracted great interest in the past few
years. A wide range of phenomena, such as fluid displace-
ment in porous media@1#, fracture propagation or dielectric
breakdown in disordered lattices@2,3#, models for punctu-
ated biological evolution@4#, and interface dynamics in
quenched disorder@5# can be described by dynamical models
which select at each time step the extremal value of a
quenched random fielde(x) plus, eventually, additional con-
ditions, for example, a critical slope in interface dynamics
@5#. The main characteristics of these models are~1! given a
realization of the disorder, the dynamics is deterministic;~2!
the dynamics is intrinsically critical, or self-organized, giv-
ing rise spontaneously to self-similar or self-affine structures,
without any fine tuning of some parameter.

The paradigm of quenched extremal dynamics is invasion
percolation~IP!, a model which describes the quasistatic cap-
illary displacement of a fluid in a porous medium. In IP, to
each point of a discretized lattice is assigned a random vari-
able, whose value is extracted from a flat probability density.
Then, one chooses a seed point from which the dynamics
starts. At the first time step the nearest neighbor of the seed
with the smallest variable is chosen and added to the invad-
ing cluster~extremal dynamics!. New variables are added to
the perimeter of the cluster, and so on.

Irreversible dynamical models with quenched random
variables, such as IP, cannot be addressed by the fixed scale
transformation method@6,7# or by any other microscopic
theory. Recently a general method to deal with quenched
extremal dynamics has been proposed, called run time statis-
tics ~RTS! @8#, or quenched-stochastic transformation, along
with ideas introduced in Ref.@9# by Pietronero and
Schneider, in a preliminary attempt to apply the fixed scale
transformation~FST! approach to IP@6,9#, and then deep-

ened and extended to a wider field of applications by Marsili
@8#.

This method is based on the idea that a deterministic ex-
tremal dynamics such as IP can be mapped onto a stochastic
dynamics with cognitive memory. When the IP dynamics
starts, one does not know anything about the values of the
quenched variables involved in the process, except that they
have been extracted from a flat distribution. As soon as the
extremal dynamics finds the smallest perimeter variable, one
acquires additional information: all other perimeter variables
are greater than the smallest one. This conditional informa-
tion can be thought of as a cognitive memory, whichremem-
bers the past growth history. The quenched-stochastic trans-
formation assigns to each perimeter variable a time-
dependent probability density, whose evolution is
determined by the extremal dynamics. The evolution of these
effective densitiesdepends on how many times a given vari-
ablei participated in the dynamics without being the smallest
one, that is to say on the ageW of the variable. Anold
variable will have a density more and more concentrated on
great values, in that it lost many times in the competition
with the other perimeter variables. By using these effective
densities we are able to map the extremal IP dynamics onto
an annealed stochastic process, where each variable is as-
signed a growth probability~the probability to be the small-
est one!, which decays to zero as theage of the variable
tends to infinity.

The RTS method allows us to develop a comprehensive
and systematic theoretical scheme for extremal dynamics
~the RTS-FST approach!, whose essential points follow.

~1! Quenched-stochastic transformation.
~2! Identification of the microscopic asymptotic dynam-

ics. This point clarifies the self-organized critical~SOC! na-
ture of the problem.

~3! Identification of the scale-invariant dynamics for
block variables. This point elucidates the nature of scale in-
variance in the problem.
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~4! Definition of the stochastic scale-invariant local
growth rules corresponding to the mapping of the original
problem. This clarifies the origin of avalanche dynamics.

~5! Use of the above elements in the FST scheme to com-
pute analytically the independent exponents.

This project has already been carried out successfully to
describe the self-organized critical state of the Bak and
Sneppen model@4# via a real space renormalization-group
~RG! approach@10#.

In this paper, after a detailed discussion of RTS theory,
the RTS-FST approach is developed to compute analytically
the fractal dimension of invasion percolation with and with-
out trapping and of directed invasion percolation~DIP!. The
avalanche size distribution of IP at the fixed point is also
investigated and the critical exponentt is computed, using
the RTS approach. All the analytical results we derive are in
very good agreement with numerical simulations and scaling
arguments@1,11,12#.

In particular, in Sec. I we introduce the IP model and
describe the RTS theory, its essential concepts as well as its
detailed mathematical formulation. The derivation is illus-
trated by simple examples. We shall stress the relations be-
tween a quenched process based on extreme statistics and a
stochastic process. This will enable us to understand properly
in which sense the stochastic process of the RTS corresponds
to the quenched process.

In Sec. II we first review the phenomenology of invasion
percolation and related models. We stress how the RTS cap-
tures the essential features which emerge from this picture.
These are mainly related to the memory effects which arise
in its dynamics. Memory provides the main mechanism for
both self-organization and the generation of fractal struc-
tures. Then we develop the RTS-FST approach for IP, with
and without trapping and DIP. Special attention is devoted to
the identification of the scale-invariant dynamics of IP and to
the implementation of the infinite time limit~freezing condi-
tion for fractals!, the fundamental ingredients of the FST
approach, which needs a different implementation for ex-
tremal dynamics with respect to other stochastic growth pro-
cesses@6#.

In Sec. III we compute analytically the exponent of the
size distribution of critical avalanches for IP. Our result is in
very good agreement with numerical simulations.

In the final section we summarize the main result and
discuss possible extensions of the methods developed in this
work.

I. EXTREMAL DYNAMICS
AND STOCHASTIC PROCESSES

A. Model and formalism

As a model for quenched dynamics with extremal statis-
tics, we will consider invasion percolation. The model is
defined as follows. To each bond of a discretized lattice is
associated a random variablee i with flat probability density
p(x)51. Without loss of generality one can define thee i in
the range@0,1#. The dynamics evolves by occupying the
bonds of the lattice. The values of the random variablese i
are extracted from thep(x) before the dynamics starts. At
time t50 one seed bondi 0 is chosen, from which the inva-
sion process starts. Then, at timet51, the nearest neighbor

of i 0 with the smallest random variable,i 1 , is added to the
clusterCt51 , and its nearest neighbors are added to the pe-
rimeter ]Ct51 . At the next step the bond with the smallest
random variable among the perimeter]Ct51 of the cluster is
selected and added to the cluster, and so on. At any time step
the variablese i on the perimeter are tested to find the small-
est one. The main characteristics of this model follow.

~1! The dynamics, given a realization of the disorder and
the seed bondi 0 , is deterministic.

~2! Self-organization. The process spontaneously devel-
ops a scale-invariant structure with critical properties. In the
limit t→` both long range space and time correlations ap-
pear.

~3! Avalanches. the asymptotic dynamical evolution con-
sists of local macroevents, composed by elementary growth
steps casually and spatially connected, called avalanches.
When an avalanche stops, the activity is transferred to an-
other region of the perimeter, leaving a structure with the
fractal properties of the infinite percolating cluster~see Fig.
1!. Avalanches show scale-invariant size distribution, as a
consequence of long range temporal correlations in the dy-
namics.

This model, which describes the dynamics of invasion
percolation, can be easily generalized to other extremal mod-
els @8#, such as the Bak and Sneppen model@4# or the
Sneppen model for quenched surfaces@5#.

B. The quenched-stochastic transformation

In the transformation of the quenched dynamics into a
stochastic one, an essential requirement is that the statistical
weights of the realizations of the quenched process are cor-
rectly reproduced by the corresponding annealed stochastic

FIG. 1. The dynamics of invasion percolation consists of local
macroevents, the avalanches, which are sequences of elementary
events causally and spatially connected. In the figure, an avalanche
~that surrounded by a dotted line! starts at timet0 and evolves for a
time s. At time t01s11 the activity is transferred to another region
of the cluster~the thick bond in the figure!.
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dynamics. It is therefore worthwhile to analyze in some de-
tail how one can evaluate the probability of a realization, or
‘‘path,’’ of the IP dynamics. A rigorous way to do this is to
impose all the order relations between the random variables
of the bonds compatible with the growth history of the path
and then to average simultaneously over all the realizations
of the random variables. The probabilityWq of the path will
be

Wq5E de j 1p0,0~e j 1!•••E de j lp0,0~e j l ! f ~e j 1, . . . ,e j l !,

~1!

where$ j 1 , . . . ,j l% are the bonds participating in the forma-
tion of the path,p0,0(x) is the probability density of the
variablese i , and f ( ) is a combination of step functions
u(e i2e j ) which implement all the possible order relations
e i.e j between the variables. Let us compute, for example,
the weight of the paths of length 2 shown in Fig. 2, for a
model with ‘‘site’’ growth rule, with C0 being the siteO,
]C0 being the four nearest neighbors ofO, $ l 1 ,l 2 ,l 3 ,l 4%, and
with densityp0,0(x)51.

At time t51 we let the sitel 1 grow and after this the sites
$ l 5 ,l 6 ,l 7% enter the perimeter]C1 ~Fig. 2!.

At time t52 there are 2 possibilities:~1! growth of one
new site between$ l 5 ,l 6 ,l 7%; and ~2! growth of one old site
~frustrated one time! between$ l 2 ,l 3 ,l 4%. Now we compute
the probabilities of paths~1! and ~2!.

~1! At t52 the site l 5 grows. The two allowed order
relations are~a! e l1,e l5,e l i where i52,3,4,6,7; and~b!

e l5,e l1,e l j where j52,3,4 and simultaneouslye l5,e l k
with k56,7. The probabilityP1 of the path is

P15E
0

1

de l1Ee l1

1

de l5~12e l5!
51E

0

1

de l5~12e l5!
2

3E
e l5

1

de l1~12e l1!
3

5
5

84
.0.0595. ~2!

~2! At time t52 the site l 2 grows. This can occur if
e l1,e l2,e l i wherei53,4,5,6,7, leading to the following ex-

pression for the probabilityP2:

P25E
0

1

de l1Ee l1

1

de l2~12e l2!
55 1

42 .0.0238. ~3!

Let us now switch to a generic stochastic process. This is
based on the following elements:~a! a set of time-dependent
dynamical variables$h i ,t% for each bondi of the lattice;~b!
a growth probability distribution~GPD! for the single growth
step$n i ,t%, obtained from the$h i ,t% and their time evolution
rule; and~c! a rule for the evolution of the dynamical vari-
ablesh i ,t→h i ,t11 . For such a stochastic process, the statis-
tical weight of a realization oft steps of the dynamics is just

Ws~ t !5 )
n51

t

n i ~n!,n , ~4!

wherei (n) is the site selected by the dynamics at timen.
Therefore in order to map IP onto a stochastic process we

have to~a! find the correct dynamical variables~the h i ,t’s!;
~b! determine the GPD$n i ,t% in terms of these variables; and
~c! find the rule by which the dynamical variables are up-
dated. This is exactly the program carried out by the RTS
theory.

We can get an insight into the essence of the question by
analyzing the simplest possible process. We start with two
independent random variablesX1 ,X2 uniformly distributed
in @0,1# and we eliminate the smallest, for example,X2 .
Clearly the probability thatX1.X2 is 1/2. Then, we compare
the surviving variableX1 with a third, uniform, random vari-
ableX3 and, again, we eliminate the smallest one. At first
sight one could say that, as before, since both variables are
uniform, the probability thatX1 survives again is 1/2. A
more careful calculation reveals that this expectation is
wrong. In this case we indeed need to evaluate the probabil-
ity that X1.X3 given thatX1.X2 . This, using the rules of
conditional probability, reads

P̃~X1.X3!5P~X1.X3uX1.X2!5
P~X1.X3ùX1.X2!

P~X1.X2!

5 2
3 , ~5!

FIG. 2. Scheme for the calculation, with the exact method, of
the weight of paths of length 2.
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where we used the notationP(AuB) for the probability of the
eventA given thatB occurred andP(AùB) for the prob-
ability of occurrence of bothA andB. The problem with our
‘‘first sight’’ argument is that the variableX1 is no longer
uniform when it is compared withX3 . The information
X1.X2 changes in a conditional way the probability density
of X1 . Indeed the probabilityr1(x)dx that x<X1,x1dx
must now account for the fact thatX2,x. Since
P(X2,x)5x for a uniform variable, a trivial calculation
yieldsr1(x)52x ~Fig. 3!. Note that with this distribution of
X1 one can correctly calculate the probability
P(X1.X3)52/3 as given in Eq.~5!. On the same footing,
one can verify that also the distribution ofX2 is no longer
uniform, but it isr2(x)52(12x) ~Fig. 3!. Qualitatively, the
eventX1.X2 decreases the probability thatX1 has small
values. On the contrary, the probability thatX2 is small is
enhanced.

The IP process can be thought of as a generalization of
the above simple process, to the case where more than two
variables participate in the selection and elimination of the
smallest one. Loosely speaking, a variablee i experiences a
frustration each time another variablee j is found to be
smaller than it. The message of the above example is that
this frustration is recorded in the distribution of the variable
e i . As a result of repeated comparisons, the distribution of
the variables on the interface evolves in time. These distri-
butionsr i ,t(x), which we label with the bond indexi and the
time t, can therefore be taken as the dynamical variables of
the stochastic process we are looking for, and will be re-
ferred to as the run time statistics. The RTSr i ,t(x) changes
from time t to time t11 only for bonds which are in]Ct .
Indeed the minimum potential is chosen among thee i for i

P]Ct . Bonds which are not in the clusterCt or in ]Ct will
maintain their original distributionr i ,t(x)5p0,0(x). The
evolution of the RTSr i ,t(x) will start at the timet0 when it
first enters the set of perimeter bonds]Ct0, and will stop only
when, if ever, at timet1 the bondi will be selected being the
one with the minimum variable among those in the perimeter
]Ct1. Indeed, fort.t1 the bond will belong to the cluster

Ct , and the process will not gain any more information on
the statistics of the variablee i .

Therefore the distribution ofe i at time tP@ t0 ,t1) will
depend only on the number of timesk5t2t0 it has not been
selected, or equivalently on the ‘‘age’’k of the bond i ,
which is the time it has spent in the perimeter. More pre-
cisely, bonds that have been in the perimeter for the same
numberk of temporal steps have the same dynamical history
and will have the same RTS, independently of their location
on the perimeter. This motivates the introduction of an alter-
native notation for the RTS and for the GPD in terms of the
index k:

r i ,t~x![pk,t~x! and n i ,t[mk,t

; iPùm5t2k
t ]Cmù ]̄Ct2k21 , ~6!

where]̄Ct indicates the complement of]Ct , the entire lattice
minus the interface, and the set in Eq.~6! contains the bonds
with agek, those entered in the perimeter at timet2k and
which still belong to the perimeter at timet. Furthermore, we
shall definenk,t as the number of perimeter bonds that have
been on it fork temporal steps. The sum ofnk,t overk gives
the total number of perimeter bonds at timet:
(knk,t5Nt5u]Ctu.

Having defined the RTSr i ,t(x) as our dynamical vari-
ables, we are now in a position to evaluate the growth prob-
ability distribution. Again this amounts to a generalization of
the above simple example, where it was shown that the prob-
ability thatX1.X3 could be evaluated correctly in terms of
the updated distribution ofX1 . Indeed, assuming the RTS
r i ,t(x) are known for alliP]Ct , we can evaluate the prob-
ability that the dynamics of IP will select the sitei . This is
indeed, if the site i has been testedk times, just
mk,t5n i ,t5P(e i5minmP]Ctem), which reads~see Appendix
A for details!

mk,t5E
0

1

dx pk,t~x!)
u

@12Pu,t~x!#nu,t2du,k, ~7!

wherePu,t(x)5*0
xpu,t(y)dy. The $mk,t% is the GPD of the

stochastic process corresponding to our quenched dynamics.
This is correctly normalized, as can be explicitly checked
@8#, and Eq.~7! is an exact relation. The selection of one
bond i with this GPD has the same effects, which were dis-
cussed for our simple example, on the distribution of the
variable e i which has been selected and on those of the
bonds j which remain on the perimeter set. The generaliza-
tion of our simple example is carried out in detail in Appen-
dix A using the rules of conditional probability. In practice,
however, this procedure may require some approximations,
because, depending on the specific problem, certain space
correlations between variables may be neglected, in order to

FIG. 3. Conditional evolution of the effective densities for the
two-variable case.~a! The density of variablesX1 andX2, before
the selection of the smallest one is uniform.~b! Density ofX1 after
one step of the extremal dynamics.~c! Density ofX2 after one step
of extremal dynamics.
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define the stochastic process as sequential@13#. We are going
to discuss this point in more detail later on. The result is that
the densitymk,t(x) of the grown bondi can be written as

mk,t~x!5

pk,t~x!)
u

@12Pu,t~x!#nu,t2du,k

mk,t
, ~8!

while the density of a perimeter bond with agek at time t
becomes

pu11,t11~x!5pu,t~x!E
0

x mk,t~y!

12Pu,t~y!
dy. ~9!

Equations~7!–~9! give the conditional evolution of the ef-
fective densities of the perimeter variables.

At this point, we can analyze the situation at timet11,
after the growth at timet. The bondi is added to the cluster;
its RTS does not evolve anymore. We have seen how the
RTS of the ‘‘surviving’’ perimeter bonds evolves. Then,
n0,t11 bonds with densityp0,t11(x)5p0,0(x) enter in the pe-
rimeter]Ct11 . The time evolution ofnu,t for uÞ0 is given,
for IP, by

nu11,t115nu,t2dk,u . ~10!

In summary, given the dynamical variablespk,t(x) at time
t, we can compute the transition probabilities from a con-
figuration of IP at timet to all the accessible configurations
at timet11 by Eq.~7!. Using Eqs.~8! and~9! we can update
the dynamical variables and findpk,t11(x). We can repeat
the same procedure for the next time step, and so on for any
subsequent step. So, Eqs.~7!–~9! accomplish our goal of
describing a quenched process, based on extremal dynamics,
as a stochastic process with cognitive memory.

The use of the interval@0,1# or the choice of uniform
initial probability densityp0,0(x)51 does not influence the
geometrical and dynamical properties of the growth process.
This results from the invariance of the above equations under
the transformation*0

xdyp0,0(y)→x that maps a general den-
sity p0,0(x) onto the uniform one.

It is instructive at this point to use the RTS in order to
compute the weights of the ordered paths of Fig. 2. A com-
parison with the exact results of Eqs.~2! and ~3! yields in-
deed a direct test of the validity of the RTS and of its ap-
proximation scheme. Using the RTS,P1 and P2 are the
product of the probabilities of the single step events compos-
ing the path. For the first path~Fig. 2!, P15n l1 ,t51n l5 ,t52

where n l1 ,t51 is evaluated by observing that

r l i ,0(x)[p0,0(x)[1 with i51,2,3,4, and applying Eq.~7!:

n l1 ,t515E
0

1

d« l1~12« l1!
35 1

4 .

In order to find the probability of the second step we need to
update the RTS ofl 2 ,l 3 ,l 4 using Eqs.~8! and ~9!:

r l i ,t51~x![p1,1~x!5 4
3 @12~12x!3#, i52,3,4

while the new sitesl 5 ,l 6 ,l 7 have densityp0,0(x). Using
again Eq.~7! we find

n l5 ,t525E
0

1

d« l5S E« l5

1

dxD 2F E
« l5

1

dx 4
3 @12~12x!3#G35 94

405 ,

which therefore yields

P15n l1 ,t51n l5 ,t525
47
810 .0.0580.

An analogous calculation forP25n l1 ,t51n l2 ,t52 gives

P25
41
1620 .0.0253.

Comparing these with the exact results,P1.0.0595 and
P2.0.0238, we find a small discrepancy. In spite of the care
paid to account for all the statistical information stored by
the process, using diligently the rules of conditional prob-
ability, we cannot recover the exact result for a path of only
two steps. The roots of this discrepancy can be traced back to
the very beginning of our discussion and lie in the very defi-
nition of quenched and stochastic processes@13#. Note, how-
ever, that if one had more variables than just two the discrep-
ancy would be much smaller. The present example is a single
one in which this effect is enhanced.

Let us have a closer look at Eqs.~1! and~4!. When Eq.~4!
is used with the RTS to evaluate the probability of a path, we
discover two main differences.

~1! First of allWq in Eq. ~1! does not have the form of a
product. The integrals in Eq.~1! cannot be factorized into a
product of single step transition probabilities. This is clearly
evident in Eqs.~2! and ~3! already for a path of two steps.
This means thatit is not possible, in general, to map exactly
a quenched extremal dynamics into a sequential stochastic
dynamics.

~2! Each disorder variablee i is integrated only once in
Wq . On the contrary, Eq.~7! implies that each variable is
integrated over at each time step of which it partakes. There-
fore the expression ofWs resulting from Eq.~4!, would con-
tain many integrals on the same disorder variablee i . This
suggests that in the RTS process the disorder variables are
not fixed as in the quenched process. The variables involved
in the dynamics, those on perimeter bonds, are replaced at
each time step by new variables with different statistical
properties. This procedure captures the essential features of
the original dynamics with quenched variables. Its practical
implementation requires certain technical approximations
which, however, can be quantitatively controlled@14#.
Strictly speaking it is not possible to obtain a sequential sto-
chastic process by integrating over all variables at each time
step. The RTS provides the sequential stochastic process
which best approximates the quenched dynamics. We have
reasons to believe that theintrinsic approximations contained
in the RTS improve when the system size becomes larger,
and vanishes in the thermodynamic limit@14,13#. Even
though at the moment we have no definite proof of this, we
note that the successes@8,10# reported by the RTS in cor-
rectly describing the properties of extremal dynamics pro-
cesses, including those to be derived in the rest of this paper,
strongly support this belief.

We shall return later to the qualitative features which
emerge from the RTS dynamics; for the time being let us
summarize the dynamical rules of the RTS process for IP.
The lattice bonds can be grouped in three classes.
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~1! Bonds being in ]Ct; they have density
r i ,t(x)5pk,t(x) and we call themactive bonds.

~2! Bonds being in Ct; they have density
r i ,t(x)5mkt0

,t0
(x), wheret0 is the time at which they have

grown. We call theseidle bonds, because after the growth
their density no longer evolves and it does not influence the
evolution of the RTS of theactive bonds.

~3! Bonds that are neither inCt nor in ]Ct; they have
densityr i ,t(x)5p0,0(x), because they have not participated
in the dynamics up to timet. We call themneutral bonds.

During the dynamical evolution, the following transitions
will take place:

neutral→active,

active→ idle.

We now proceed to discuss a specific example.

II. APPLICATION OF THE RTS TO THE STUDY
OF IP AND DIP

A. Percolation and invasion percolation

We briefly introduce the characteristics of the ‘‘static’’
percolation, as described, for example, in@15#. Let us con-
sider ad-dimensional lattice, say a cubic one. We associate
to each bond~or site! i of the lattice, independently from
each other, a random numbere iP@0,1# extracted with uni-
form probability densityp(x)51. Then, we choose a thresh-
old value p and introduce this occupation rule: the bonds
with e i,p are occupied, and the others remain unoccupied.
In this way, each bond will be occupied with probabilityp
and not occupied with probability (12p). We say that the
structure composed by the occupied bonds percolates if it
contains as a connected structure that spans the lattice in all
directions. An important property of this model is that there
is a critical valuepc,1, for d.1, depending on the lattice
coordination number and on the dimensiond, such that for
p.pc one has a percolating cluster and forp,pc it does not
exist. One can show that the percolation model exhibits at
pc a typical second order phase transition with one relevant
parameterp and a repulsive fixed point atpc . Near this fixed
point the relevant quantities of the model show power law
behavior with critical scaling exponents@15#. The existence
of an upper critical dimensiondc56 allows us to use
renormalization-group methods together with thee expan-
sion to calculate these exponents.

Let us concentrate on the geometrical properties of the
percolating cluster for two-dimensional~2D! bond percola-
tion. For p,pc51/2 there is no percolating cluster, as we
said before. Forp.pc51/2 the percolating cluster is com-
pact withDf52 and there are other finite clusters up to a
given size. Forp5pc51/2 there is an intermediate behavior:
the percolating cluster is fractal withDf5

91
48.1.8956 and

there are many other finite clusters of all dimensions, without
a characteristic size. The probability distribution of the clus-
ter size follows the scaling relation:

P~s;p!5sn~s;p!5s2t f @ up2pcuss#, ~11!

wheren(s;p) is the mean number of clusters of sizes per
bond, 1,t,2, and s.0 is associated to a cutoff size
s05up2pcu2 1/s. This scaling relation becomes, atpc ,

P~s;pc!}
1

st .

For 2D bond percolation exact methods@15# give
t596/91. In Sec. III an analogous characteristic quantity of
IP, the avalanche distribution, will be studied both analyti-
cally and numerically.

The invasion percolation model with its variations~IP
with trapping and directed IP! is the main subject of this
paper. It was introduced in 1980@17#, and it is really inter-
esting for the following reasons.

~1! It can be used, as in the original applications@1,16,17#,
to describe the active displacement~the dynamics! of a fluid
in disordered media by another unmixable fluid, under an
external or internal pressure.

~2! IP seems to reproduce, as we will explain further on,
in a self-organizedway, the geometrical properties of the
percolating cluster. This is a particularly interesting situation
because the same geometric entity arises from both an usual
critical behavior and a self-organized one.

~3! IP can be considered as the paradigm of all quenched
growth dynamics with extremal statistics.

The main application of IP is to the phenomenon of fluid
displacement of adefenderfluid in a porous medium by
another fluid, theinvader, unmixable with the defender,
when capillarity forces prevail. The medium is often mod-
eled as a hydraulic network of throats and pores. Here we
represent it as a bidimensional lattice where the bonds rep-
resent the throats and the sites represent the pores. To both
sites and bonds is associated a random variable that repro-
duces the pore and throat size.

A fundamental phenomenological quantity is the capillary
numberC given by

C5
mv
g
,

wherem is the viscosity,v the mean speed, andg the surface
tension. It reproduces the ratio between viscous and capillary
forces. The regime we are interested in is realized when
C!1. In this limit the invader occupies the bonds with the
smallest size, that is to say, the greatest surface tension. If
alsov!1, we are in the quasistatic regime, and the dynam-
ics coincides with that of the IP model previously intro-
duced. From the point of view of fluid displacementCt is the
inv ader and]Ct is the interface between the two fluids. The
sites of the lattice that are extremes of a bond inCt belong to
the cluster, as usually happens for fluid displacement in po-
rous media. The dynamics stops after the invader spans~per-
colates! the lattice.

In order to avoid finite size effects@16# we are interested
in the case of a very large lattice; this allows us to consider
the limits r→` and t→`, for which the scale-invariant
properties of the model are well defined. An interesting phe-
nomenon occurring during fluid displacement is that oftrap-
ping. Trapping occurs when the defender is totally incom-
pressible and a bubble of defender is completely surrounded
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by the invader: the invader will no longer invade the sur-
rounded region. This effect creates extra holes in the invader
cluster, lowering its fractal dimension. There are two pos-
sible definitions of trapping@11#. In order to understand them
we need to introduce the concept of edge connectedness of a
defender cluster to the lattice edges:the defender cluster is
connected if there is a path of defender bonds (and sites)
connecting the cluster to the lattice edge. The two definitions
of trapping follow.

~1! Trapping I ~site trapping!: a cluster of defender bonds
is trapped if it does not satisfy the edge connectedness con-
dition @Fig. 4~a!#.

~2! Trapping II ~bond trapping!: a cluster of defender
bonds is trapped if it does not satisfy the edge connectedness
condition and it is surrounded by a closed path of invader
bonds@Fig. 4~b!#.

Trapping I corresponds to usual trapping in fluid displace-
ment. Moreover, trapping II is rare with respect to trapping I.

Most of the results obtained until now on IP with and
without trapping, except some@18#, derive from numerical
analysis of large simulations of the process@11,12#. These
results concern mainly IP without trapping because trapping
is a nonlocal, very difficult to handle, effect.

Let us start from IP without trapping. It has been demon-
strated that, in the limit of infinite lattice, the asymptotic
properties of the percolating cluster do not depend onC0 ,
provided that it is finite@18#. In @17,16# one defines a useful
quantity, the acceptance profileat(x), given by the ratio be-
tween the number of bonds inCt with variable ranging be-
tweenx andx1dx and the total number of bonds with vari-
able betweenx andx1dx in CtU]Ct . The functionat(x) has
in the limit t→` the following behavior, obtained both by
simulations and by rigorous demonstration@18#:

lim
t→`

at~x!5u~pc2x!, ~12!

wherepc is the critical threshold of static percolation. Equa-
tion ~12! means that, asymptotically, almost all the bonds in
the perimeter with variable less thanpc will eventually grow,
and almost all the bonds with variable larger thanpc will not
grow. This is a proof of the correspondence between IP and
static percolation at the critical point.

Another rigorous result for IP is that the ratio between
Nt and the cluster masst tends to a constant different from
zero @18#:

lim
t→`

Nt

t
5
12pc
pc

Þ0, ~13!

which depends on the critical threshold. The limit in Eq.~13!
would vanish for any compact structure. Therefore Eq.~13!
implies that the clusters generated by IP are fractal. Indeed,
large scale simulations of IP@11# giveDf

IP.1.89, which co-
incides, within numerical accuracy, with the fractal dimen-
sion of percolating clusters atp5pc .

Finally it is seen that the dynamics of IP occurs insequen-
tial bursts of activity, which can be thought of as macro-
events calledavalanches. An avalanche is a temporal con-
secutive set of growth events causally and spatially con-
nected to a first growth event. The distribution of avalanche
duration is therefore the same as the distribution of the total
number of bondss involved:

D~s!;s2t, ~14!

which reflects the critical character of the dynamics. These
results support the hypothesis@16# that IP asymptotically re-
produces the geometrical properties of the infinite cluster of
critical percolation.

The same picture applies to IP with trapping: the accep-
tance profile, though more slowly and asymmetrically with
respect topc @1#, tends asymptotically to Eq. 12. The surface
to volume ratio, also, does not vanish, and the geometry of
the clusters turns out to be described by a well defined value
of the fractal dimension. Simulation results@11# give
Df.1.82 for site trapping, andDf.1.86 for bond trapping
~see Table I!. Note that trapping effect, in both cases, adds
empty zones to the growing structures leading to a fractal
dimension lower than that of IP without trapping.

This general picture also emerges from an analysis of the
RTS equations. The statistical properties of the active vari-
ables on the perimeter are described by the histogram

FIG. 4. ~a! Trapping I or trapping per site;~b! trapping II or
trapping per bond.s and the dotted segments indicate the defender
~oil!, while d and filled segments are the invader~water!. ~b! is
more rare than~a!, because a configuration verifying~b! will verify
~a! also, but the converse is not true.

TABLE I. Fractal dimension vs ordern for IP without trapping
(Df), with site trapping (Df

I ), with bond trapping (Df
II), and for

directed IP (Df
DIP). In the last two lines we compare the FST results

with known analytical and simulation values.

Ordern Df(n) Df
I (n) Df

II(n) Df
DIP(n)

3 1.7039 1.6965 1.7029 1.6254
4 1.7941 1.7378 1.7825 1.6626
5 1.8228 1.7506 1.8066 1.6924
6 1.8473 1.7599 1.8245 1.7081
7 1.8565 1.7642 1.8317 1.7189
8 1.8645 1.7678 1.8372 1.7250
9 1.8677 1.7697 — —
A A A A A
` 1.8879 1.7812 1.8544 1.7444
Analytical 91

48.1.895a .1.748b

Simulation ;1.89@1# ;1.82@11# ;1.86@11#

aConformal mapping applied to 2D Percolation@15#.
bSeries expansion@27#.
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F t(x)5^ht(x)&/^Nt&, where ht(x) is the histogram for a
given realization of the disorder,Nt is the number of active
variables at timet, and^ & is the mean over all realizations
of disorder. TheF t(x) function, apart from normalization, is
the complement of the acceptance profileat(x). Using the
RTS equations one can write the following histogram equa-
tion for the time evolution ofF t(x) @8#:

]xF t~x!5bV tF t
2~x!F12

v t

v t11
F t~x!G , ~15!

whereV t5^Nt&, v t5^Nt112Nt&, and b is a function of
V t . The solutionF t(x) of this equation becomes asymptoti-
cally limt→`F t(x)5@1/(12rc)#u(x2pc), where pc is the
critical threshold of the original extremal dynamics. This
clarifies the SOC nature of the problem. A similar equation
describing the SOC behavior of extremal dynamical models,
the gap equation, has been obtained by Baket al. @4#, based
on phenomenological assumptions. Our histogram equation
is instead derived directly from the microscopic dynamics.

The mechanism responsible for the formation of a fractal
structure can also be readily appreciated. It is indeed known
@17# that the feature of a growth dynamics which can pro-
duce a fractal structure is the presence ofscreeningat all
length scales. Let us borrow the dielectric breakdown model
~DBM! @19# in order to illustrate this point. Here the Laplace
equation conspires with the growing cluster in such a way
that the probability of growth on a site drops exponentially to
zero with its distance from the tips of the structure. This
means that whole regions of the perimeter of the cluster can
be considered, to a good approximation, as ‘‘frozen,’’ when
the probability of the growth events in this region becomes
very small. Furthermore, the screening effects act@17# at all
length scales, as suggested by the scale invariance of the
Laplace equation. Therefore the process leaves similar frozen
structures at all length scales, i.e., it produces a fractal.

A crucial point in the practical translation of these obser-
vations is that a growth process produces a scale-invariant
structure if and only if its dynamics can be described at all
~large enough! length scales in the same way, i.e., if the
process is characterized by ascale-invariant dynamics.
Therefore, in order to understand a process which produces
fractal structures, it is essential to find its scale-invariant dy-
namics @20,21,7#. We shall examine in detail the scale-
invariant dynamics of IP in the forthcoming section. For the
time being, we make some comments on the main qualitative
feature which is responsible for the emergence of screening
effects in the dynamics of IP and therefore of its fractal prop-
erties.

The effective screening arises in IP from the memory ef-
fects intrinsic in the dynamics. Qualitatively, we have seen
that a bond on the perimeter which has not been selected for
a long time~i.e., a bond with a RTS index, or agek@1) will
have very little chance of being selected. In other words, the
probabilitymk,t decreases as the agek of the bond increases.
This observation can be quantified by a crude approximation
which reveals thatmk,t;(k11)2a, the exponent being
a52 within the approximation@8#. A numerical test of this
relation confirms its behavior but results in a value of
a51.3560.05 @22#. The lack of a characteristic time in this
relation is at the very heart of scale invariance in IP~indeed,

time and length scales are related by a power lawt;l Df).
However, the nature of screening here is quite different from
that in the DBM model, where it was directly related to the
geometry of the cluster. Here screening occurs in time, irre-
spective of space, as a consequence of the accumulation of
frustration events in the RTS of the random variables in the
perimeter of the cluster.

It is also worthwhile to comment on the specific value of
a. One can do this by defining an oversimplified RTS gen-
eralized dynamics in which Eq.~7! is replaced with

mk,t5m0,t~k11!2a ~16!

andm0,t is defined through the normalization condition. It is
not difficult to realize that fora,1, the process results in a
compact cluster. Indeed, the probability that a bond does not
grow after k events,) j51

k11(12m0 j
2a), goes to zero as

k→`, which means that all bonds will, sooner or later,
grow.

The memory screening is effective and generates a fractal
cluster only fora.1. For 1,a,2 the screening is ‘‘weak’’
whereas fora.2 it is ‘‘strong.’’ The difference can be ap-
preciated by observing that fora.2 there is a finite prob-
ability that an infinite avalanche occurs. We skip the deriva-
tion of this result, which totally parallels the arguments used
for a closely related model@22#, and stress that, if an infinite
avalanche starts at timet0 on the bondi 0 , none of the bonds
which are in]Ct0\$ i 0% (\ means except! will ever grow in the
future. This means that they can be considered as frozen. For
1,a,2 infinite avalanches occur with zero probability, the
screening effect is weak because one can never exclude the
possibility that a bond which has waited for an arbitrarily
long time k on the perimeter set will be selected at some
future time. This will reflect in the peculiar implementation
that the freezing condition@7# will have in the application of
the FTS to IP and related models.

Finally we note that this feature of the dynamics allows us
also to appreciate the difference in the fractal dimension of
IP with trapping in versions I and II. This difference is some-
what at odds with the general expectation that ‘‘universal’’
properties, such asDf , should not depend on the micro-
scopic details of the dynamics. A trapped region in the first
version of IP with trapping would not be trapped, because of
only one bond. To understand how this difference is ‘‘scale
invariant’’ one can imagine a process that, starting from a
point A at t50, encloses a region of sizeR and reaches at
time t the siteB, neighbor ofA. This region would be
trapped in the first version, but still open in the second. The
probability that trapping will occur also in the second version
is the probability that the bondAuB grows. This will, how-
ever, be of ordert2a because the age of the bondAuB is of
ordert. The ratio of the probabilities of trapping of a region
of sizeR in the two versions will also depend onR through
a power law. This represents a real ‘‘scale-invariant’’ differ-
ence between the two processes which is expected to affect
also the value of the fractal dimension.

B. The scale-invariant ‘‘global’’ dynamics for IP

It has been shown@20# that if a growth process has a
scale-invariant growth rule and an attractive fixed point in a
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given space of dynamical rules, this scale-invariant growth
rule will be of bond type even if the rule at the microscopic
scale is of a different nature~e.g., a site rule, or a rule with
diagonal bonds!. Here we will address, starting from the
above considerations, the problem of the individuation of the
scale-invariant dynamics for IP.

Let us start from a microscopic bond rule. We consider
how the dynamics changes under a scale transformation.
First of all we define a coarse-graining procedure, shown in
Fig. 5: the eight bonds in the left part of the figure are
mapped into the two coarse-grained bonds at the right. We
consider the renormalized dynamics described in terms of
effective quenched variables that refer to the coarse-grained
bonds. We call the random variables for the bonds at the
starting scalee i , i51, . . . ,8 and theeffective variables of
the rescaled bondse j

(1) , j51,2. Thee j
(1) are functions of

the e i ,

e j
~1!5F j~e i ,i51, . . . ,8! with j51,2, ~17!

which would be the outcome of a real space renormalization
group~RSRG! treatment of the dynamics of IP without pro-
liferation. It is enough in this case to identify the scale-
invariant dynamics from general considerations, similar to
those used in Ref.@10#.

In passing from one scale to the other, we require that the
coarse-grained variables and their dynamics keep the rel-
evant aspects of the process at the smaller scale. In this way
the scale transformation eliminates only the irrelevant as-
pects of the dynamics.

In the particular case of IP, the dynamics is determined by
the extremal statistics: the bond with the smallest variable
grows. It is natural to require that this extremal property of
the dynamics will be retained at all scales. In other words,
we shall determine theF j ( ) in such a way that the dynamics
at the smallest scale can be described, at the larger scale, by
the growth of the coarse-grained bond with the smallest vari-
ablee j

(1). In Fig. 6 we show a coarse-graining procedure for
extremal dynamics@10#. In the left side of the figure there are
two paths leading to cellB ~respectively, to pointsx1 ,x2),
composed by a set of quenched variables$e i%b ($e i%b8). Each
path is characterized by the largest variable in the set~saddle
point!. The path with the smallest saddle point is the best one
and will compete with the best path leading to cellA. At this
point, we identify the block variableeA (eB) with the saddle
point of the best path leading to the corresponding cell:

eA5FA@$e i%a#5min
a

@max
i

$e i%a#. ~18!

This should be compared with the corresponding block vari-
able eB for B. Of course the distribution ofeA and eB will
now become rather complex. However, it will be the same
for all the coarse-grained bonds. We have seen before that

the competition between quenched variables is actually inde-
pendent of the initial distribution. This means that, at any
scale, we can always consider for this distribution the flat
one. So, we conclude that the coarse-grained dynamics is
intrinsically scale invariant.

The only assumption made in our RG scheme is that of
neglecting certain correlations between block variables. A
full RSRG treatment of the dynamics of IP would allow us to
go beyond this approximation and to assess whether the
eventual correlations vanish in the asymptotic scale-invariant
dynamics@13#.

C. Fixed scale transformation for IP:
The ‘‘scale-invariant local dynamics’’

We have seen that IP can be described in a way similar to
a stochastic growth with annealed disorder. Once we have
mapped IP onto a stochastic dynamics using the quenched-
stochastic transformation we can compute its fractal dimen-
sionDf using the fixed scale transformation approach. This
method is based on the possibility of dealing separately with
the two limits in which the fractal properties of such a struc-
ture are well defined:r→` and t→` @7#. The former is
introduced using a scale-invariant growth rule, the latter usu-
ally ~as for DBM! is introduced considering the growth in a
frozen region of the structure.

While RG approaches are based on the scale invariance of
the process under rescaling of the relevant parameters, FST
is based on the invariance of the statistical properties of the
fractal structure under translation, at a fixed scale, in the
growth direction of the process. The FST approach is devel-
oped in two steps.

~1! One takes an intersection of the structure with a line
orthogonal to the growth direction. This intersection is
treated as a random Cantor set with fractal dimension
Df85Df21, because of the theorem of the additivity of the
codimension@23#. The generators of the Cantor set~see Fig.
13! have weightsC1 andC2 , with C11C251. They are the
basic configurations for the intersection set and define its
statistical properties. In fact, the fractal dimensionDf8 can
be written as@24# Df85 ln(C112C2)/ln2.

~2! One computes the conditional probabilities to have a
configuration of typei on a given intersection set followed at

FIG. 5. Coarse graining of the lattice geometry. The eight-bond
configuration at left is rescaled into the two-bond configuration at
right.

FIG. 6. Renormalization scheme for the extremal dynamics:~a!
dynamics at the smaller scale;~b! the rescaled dynamics. The two
paths leading to cellB ~respectively, to pointsx1 ,x2) are composed
by a set of quenched variables$e i%b ($e i%b8). Each path is charac-
terized by the largest variable in the set~saddle point!. The path
with the smallest saddle point is the best one and will compete with
the best path leading to cellA.
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the next intersection set by a configuration of typej
( i , j51,2). These conditional probabilitiesMi , j form a
232 matrix, called FST transfer matrixM . The relation
between the weightsC1 ,C2 of the basic configurations, on
which the FST matrix acts, at the intersectionk, and those at
the intersectionk11, is given by

$Ci
~k11!%5M $Ci

~k!%. ~19!

The fixed point solution of~19! is

C1*5S 11
M1,2

M2,1
D 21

. ~20!

Equation~20! gives the asymptotic statistical properties of
the intersection set. In fact, theMi , j can be expressed as
lattice path integrals over all the growth histories of the pro-
cess leading to a configurationi followed in the growth di-
rection by a configurationj . FST performs the calculation of
theMi , j with the simplifying assumption that growth occurs
only in a ‘‘growth column’’ of indefinite height, with a two-
site basis, and with a ‘‘frozen’’ starting configurationi ~Fig.
7!. The scheme of calculation can be refined with the intro-
duction of fluctuating boundary conditions and of the empty
configurations@25# that extend the growth process outside
the growth column. The FST has been applied to a variety of
models, giving very good estimations of their fractal dimen-
sion @7#. However, in order to obtain scale-invariant results
one has to use the scale-invariant dynamics of the process in
the calculation of theMi , j @20,21#.

Now we try to define a FST approach for IP based on the
use of RTS. In the peceding subsection we have seen how to
deal with the limit r→`, i.e., how bonds can represent
‘‘coarse-grained’’ lattice elements, using the ‘‘scale-
invariant growth rule.’’ Since the nature of ‘‘freezing phe-
nomena’’ in IP is quite different from that of DBM, we have
to introduce the limitt→` in a peculiar way defining a
‘‘local dynamics.’’ While in DBM the nature of freezing is
referred to regions of the lattice, in IP it is referred only to
single bonds. In fact in DBM freezing is an electrostatic
phenomenon, so if a point has a very low value of the elec-
trostatic field it is reasonable to think that it exists in an

extended region surrounding that point with low values of
the field, too. This characteristic allows us to consider only
the bonds in the growth column to deduce the fractal prop-
erties of the structure. In fact, this column is thought to be on
the surface of such a region of the structure. In IP, freezing is
a probabilistic phenomenon, referred only to single bonds.
So, it is possible to have a frozen bond on the perimeter~a
bond with a great frustration indexu) near to an active bond
~smallu). This is also the reason the perimeter has the same
fractal dimension of the structure itself.

How can we deduce the fractal properties of the structure
generated by IP, in the limitt→`, considering explicitly
only the bonds inside the growth column? To answer this
question we need to find the scale-invariant ‘‘local’’ dynam-
ics. The scale-invariant growth rule we have found for IP is
the rule of the ‘‘global’’ dynamics. Using this rule together
with the RTS approach, we can evaluate the statistical
weight of any path generated by the IP process, at a generic
scale. However, in order to use the global growth rule it is
necessary to know the whole history of the process from the
initial instantt50. In fact, the probability of one growth step
of the path depends on the RTS of every bond in the perim-
eter of the structure, and the form of the RTS is determined
by the past growth history.

On the other hand, the FST approach is based on the
evaluation of the statistical weight of paths inside the growth
column, considering explicitly only the bonds inside this col-
umn and the others in the perimeter just in a mean way. So,
to apply the FST approach to IP, we have to modify the RTS
equations in such a way as to be able to evaluate the ‘‘tran-
sition probabilities’’Mi , j related to the FST method, consid-
eringexplicitly only the bonds inside or near the column and
implicitly the others. In doing so we shall recognize the
scale-invariant local dynamicsthrough the definition of
scale-invariant asymptotic avalanches.

We consider a growth column on the perimeter of the
already infinite structure (t→`). We are going to show that
the RTS dynamics which corresponds to thelocal scale-
invariant dynamics, as in Ref.@10#, is obtained by~i! con-
sidering only bonds inside the growth column;~ii ! imposing
that any ‘‘active’’ bondi in the column can grow only if the
value of its variablee i is less thanpc51/2; the idea is that if
e i.pc for all the bonds in the growth column, growth will
occur at some other place in the structure outside the growth
column; and~iii ! requiring that the largest of the variables
which participate in the growth process, which is the variable
on the initial bond, has exactlye i5pc . This local dynamics
derives directly from the global dynamics. To see this it is
sufficient to observe that in Eq.~7! we can separate, in the
product inside the integral, the contribution from the part of
the interface]Ctin inside the column, and that over the bonds
kP]Ctout outside the column:

n i ,t5E
0

1 r i ,t~x!dx

*x
1r i ,t~z!dz

Zt
in~x!Zt

out~x!, ~21!

where

Zt
out~x!5 )

jP]Ct
out
E
x

1

r j ,t~y!dy ~22!

FIG. 7. An example of initial configuration in the growth col-
umn for the FST scheme of calculation.
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andZt
in(x) is analogously defined. Now, if the bondiP]Ctin

actually grows and its value ise i5pc , we can interpret
Zt11
out (x) as the probability that the minimum variable outside

the column is larger thanx. It follows straightforwardly that
Zt11
out (x)51 for x,pc . Indeed the minimum variable in

]Ctout will surely ~i.e., with probability 1) be larger than
e i5pc in view of our assumption for the event at timet. On
the other hand, if the cluster is very large (t→`), we can
appeal to the properties of the histogram distribution@8#, and
conclude that there will be variables in]Ctout whose value
will be arbitrarily close topc . In fact, the histogram distri-
bution for the perimeter variables of an asymptotically large
structure is a step function. This can be proven rigorously as
a property of the asymptotic structure@18#. The RTS method
@8# allows us to follow the evolution of the histogram and to
show that the step function corresponds to the attractor for
the dynamics of the system. Therefore, in the limitt→`, we
can conclude thatZt11

out (x)50 for x.pc . In summary
Zt11
out (x), as t→`, tends to a step function atpc . When

inserted in Eq.~21! the integration variablex runsonly up to
pc, and the contribution from the bonds outside the column
disappears. Therefore, going back to the RTS variablek,
Eqs.~7!–~9! for the local dynamics read

mk,t5E
0

pc
dx pk,t~x!)

u
@12Pu,t~x!#nu,t ,2du,k , ~23!

mk,t~x!55
pk,t~x!)

u
@12Pu,t~x!#nu,t2du,k

mk,t
for x,pc

0 for x.pc ,
~24!

and

pu11,t11~x!55
pu,t~x!E

0

x

dy
mk,t~y!

12Pu,t~y!
for x<pc

pu,t~pc!E
0

pc
dy

mk,t~y!

12Pu,t~y!
for x>pc ,

~25!

wherenu,t is now the number of the bonds, inside the col-
umn, which have ageu.

We need still to motivate the choice ofe i5pc for the
initiator of the local process. Note that, up to now, we have
only imposed on the local dynamics thet→` condition,
which implies that the local event is occurring in the pres-
ence of an ‘‘infinite’’ cluster. The requirement thate i5pc
results from imposing scale invariance on the local dynam-
ics, i.e., from the limitr→` @7#.

In order to see this, let us recall the definition of ava-
lanches in IP: an avalanche is defined as a temporally con-
secutive set of growth events causally and spatially con-
nected to a first growth event. The bond related to this first
growth event is called theinitiator of the avalanche. To
make this definition clear we focus our attention on an active
bond l on the perimeter of the structure which grows at the
instant t0; the avalanche with initiatorl is defined as the

temporal sequenceof growth events which begins att0 and
ends when a bond that was on the perimeterbefore t0 will
grow.

From this definition one deduces that every growing bond
can be considered the initiator of an avalanche. In particular,
the whole structure can be seen as the avalanche related to
the first grown bond att50. This means that any avalanche
is made by other subavalanches in a hierarchical order. The
number of subavalanches in which we can decompose an
avalanche is obviously equal to its sizes.

Let us analyze the properties of an avalanche taking place
on the perimeter of the infinite structure (t→`). In this
limit, if the initiator has a variablee i5p, we can extract the
statistics of this avalanche process from Eqs.~23!–~25!
wherepc is replaced byp. It is obvious from these equations
that the size of the avalanche and its statistical properties
depends only on the valuee i5p of the variable of the ini-
tiator i . It is known @12# that the distribution of the size of
avalanche has scale-invariant properties only ifp[pc . Ava-
lanches withp.pc , in view of the acceptance profile, can be
neglected as really rare events~indeed these would have an
infinite duration, and on the grounds of our previous discus-
sion can be neglected!. On the contrary, avalanches starting
with p,pc will have a finite lifetimes0;up2pcu21/s. These
cannot be thought of as scale-invariant events. Only for
p5pc will the process defined by Eqs.~23!–~25! be scale
invariant. If the initiator hase i5pc , the process will sample
its duration out of a scale invariant distribution, and therefore
it will be, itself, scale invariant. This justifies the use of Eqs.
~23!–~25! in the application of the FST to IP. This local
dynamics has the following properties.

~a! The dynamics is defined only in terms of the local
variables inside the growth column. The presence of the in-
finite perimeter enters only via the variablee i5pc of the
initiator. In this way we do not need to know the RTS of the
other perimeter bonds.

~b! The growth probabilitiesn i ,t01s , calculated at each

time step t01s, are not normalized to 1, that is to say,
( iP]C

t01s
in n i ,t01s,1. This implies the existence of a probabil-

ity

Wt01s~« i !5 )
jP]Ct01s

in
E

« i

1

dxr j ,t01s~x!>0 ~26!

that the process stops. In this case the activity moves to
another region of the perimeter. This is a relevant feature of
the local avalanche dynamics, and it reflects the dynamical
evolution of IP.

In the FST calculation scheme for problems such as DBM
the growth probability distribution is usually normalized in
the growth column in order to allow the growth interface to
reach regions far from the starting one. This allows us to
reach more easily the geometrical ‘‘freezing’’ limitt→` in
the growth column. This is an important assumption, because
in models like DBM, the fractal properties of the frozen re-
gions are different from these of the growing perimeter.

In IP these problems do not exist, becausewhen an ava-
lanche with initiator at pc stops it leaves a local structure
with the same statistical properties of the bulk of the whole
cluster. In fact, after an avalanche has stopped, all the local
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perimeter bonds will have potentials greater thanpc , and we
know from the acceptance profile that bonds with such val-
ues of the potential will not grow.

Therefore the lack of normalization of the GPD for the
local dynamics is totally consistent with the FST scheme.
This is an interesting and relevant aspect of the local scale-
invariant dynamics for IP. In fact, we have verified that if
one substitutespc with 1 in Eqs.~23!–~25!, using the global
scale-invariant dynamics instead of the local one, one forces
the process to occupy all the bonds in the column. This pro-
duces a compact structure withDf52. In this respect it may
be useful to comment about how the present approach com-
pares with the preliminary one developed in 1990 by Pietron-
ero and Schneider@9#. In that paper the basic idea of the
quenched-stochastic transformation is introduced. However,
its implementation in the FST scheme was highly simplified
and heuristic. In some sense the FST matrix elements are
computed from a sort of exact enumeration of the first few
steps and, for example, the questions of the self-organization
and the scale-invariant dynamics could not be addressed. The
approach discussed here represents instead a rather complete
and systematic theoretical method for these extremal prob-
lems.

D. Calculation of the fractal dimension of IP

Now we proceed to the calculation of the fractal dimen-
sion of IP in the FST scheme. This scheme is based~see
@6,7#! on two main approximations.

~1! Only periodic boundary conditions with variable pe-
riod l are allowed for the growth column.

~2! In practice we consider only two values of the period
l: l50 ~closed boundary conditions! and l5` ~open
boundary conditions!. To each case we assign a weight in a
self-consistent way, as discussed in@7#.

Note that for IP and for percolation problems in general
this ‘‘open-closed’’ approximation is particularly accurate.

The calculation of the FST matrix elementsMi , j
op and

Mi , j
cl for open and closed boundary conditions, respectively,

is performed by using the graphical expansion shown in Fig.
8 ~for more details see@6,7#!, where themk,t are given by Eq.
~23!. We call ordern of the process the number of bonds
grown starting from the initial configuration~see Fig. 7!. The
bond connecting the frozen cell to the occupied site is the
initiator of the avalanche with variablepc . Let us call
Mi , j

op(n) andMi , j
cl (n) the matrix elements at ordern for open

and closed boundary conditions, respectively. Usually, for
both boundary conditions, at a given ordern, one directly
evaluates theMi ,2(n), getting theMi ,1(n) elements from the
normalization condition( jM i , j (n)51 .

For example, let us evaluateM1,2
op(n52). At the first step

we have two ‘‘active’’ bonds in the column~see Fig. 8! that
we indicate as 1,1 and 2,1, where the first number is the bond
label and the second number is the ordern. Everyone has
r i ,1(x)5p0,0(x)51 with i51,2. From Eq.~23! with pc5

1
2

one gets

m i ,15E
0

1/2

dx~12x!5 3
8 . ~27!

For i52 we have the first path contributing toM1,2
op

M1,2
op~n51!5 3

8 . ~28!

We can also calculate the probabilityP1 that the avalanche
ends already at the first order. From Eq.~26! with
« i[pc51/2 we have

P15S E
1/2

1

dxD 25 ’1
4 . ~29!

To compute the second order contribution toM1,2
op we let the

bond 1,1 grow at timet51. Two new bonds enter the pe-

FIG. 8. ~a! Graphical scheme for the calculation ofM1,2
op ~at the second order!; ~b! graphical expansion for the calculation ofM1,2

cl ~second
order!. The black dots are the occupied sites and the labelsi , j of the m i , j ~the m i , j are the growth probability of the stochastic process!
indicate, respectively, the active bond~from left to right and from top to bottom! and the order of the process.
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rimeter with uniform density~Fig. 5!. The density of the
bond 1,1 becomes, after it grows,

m1,1~x!5 8
3 ~12x!u~ 1

22x!. ~30!

At order 2 the bond 2,1 is labeled 3,2, and has updated
density

r3,2~x!5 8
3min~x, 12 !. ~31!

Now we can computem3,2, which is the only second order
contribution toM1,2

op applying Eq.~23! again:

m3,25
11
72 . ~32!

So, at the second order we obtain

M1,2
op~n52!5m2,11m1,1m3,25

3
81 3

8
11
72 . ~33!

Such calculations can be pursued to any higher order, con-
sidering at any order all the paths contributing toM1,2

op In the
same way we calculateM2,2

op

Then we calculate, using the same method, the matrix
elements for closed boundary conditionsMi ,2

cl For a given
order n it is possible to express the weightsC1(n) and
C2(n) of the two-cell configurations in the intersection set in
terms of theMi , j

op(n) and Mi , j
cl (n) using the formula~see

@6,7#!

C1~n!5
M1,2

cl 1M2,1
cl 2 3

2 M2,1
op2@~ 3

2 M2,1
op2M1,2

cl 22M2,1
cl !224M2,1

cl A#1/2

2A
,

C2~n!512C1~n!,

A5M1,2
cl 1M2,1

cl 2 3
2 ~M1,2

op1M2,1
op !, ~34!

where we omitted for simplicity then dependence of the
matrix elements.

The fractal dimension at the ordern is given by

Df~n!511
ln@11C2~n!#

ln 2
. ~35!

Unfortunately, while for DBM we have an exponential con-
vergence@6,7# with respect to the ordern of the matrix ele-
ments, for IP the convergence is power-law-like. This should
be expected, in view of the power law behavior of
mk,t;(k11)2a ~memory effect! discussed previously. It is
therefore necessary to extrapolate the results ton5`. In
order to perform the calculations needed in practice we have
developed a computer algorithm which executes the calcula-
tion of the growth probabilities, the updating of the RTS, and
stores all the growth histories. The integrals are performed
with the method of Gaussian integration over 100 points in
@0,1/2#, because the RTS, in thescale-invariant local dy-
namics, is constant in@1/2,1#.

In Table I we report the RTS-FST values of the IP fractal
dimension for the various orders, compared with known ana-
lytical and simulation results. Our result is in very good
agreement both with numerical simulations and with known
analytical values. The same scheme can be easily applied to

the case of IP with trapping for both site and bond trapping.
Before treating these two cases, we want to address briefly
the problem of the scale-invariant dynamics. If we assume
the coarse-grained random variables on the lattice to be sta-
tistically independent, the scale-invariant local dynamics is
completely specified by the value ofpc , like for IP without
trapping. The scale-invariant dynamics for IP with trapping
is the same as for IP. This can be verified, for example, in
@1#, where one sees that the acceptance profile of IP with
trapping tends asymptotically, although with lower speed
and asymmetrically, to the same step function found for IP.
Another way to verify our argument is the following: if we
consider a trapped region of the lattice, the growth events on
the perimeter are statistically independent from the bonds

FIG. 9. Left side of the figure: an example of the introduction of
trapping I in the FST scheme. Right side of the figure: an analogous
example for the implementation of trapping II. One can see in both
cases how the path generating trapping contributes toMi ,1

cl

FIG. 10. Values of the fractal dimensionDf(n) for IP (n), IP
with site trapping (h), and IP with bond trapping (L) via FST
calculations versus 1/n2 for n53, . . . ,9. The extrapolation gives the
asymptotic valueDf(`) ~filled symbols!.
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inside the trapped zone. This means that trapping does not
have, asymptotically, any influence on growth in the external
perimeter. So, the scale-invariant dynamics is the same.

In the FTS scheme trapping appears only for closed
boundary conditions. In fact~see Fig. 9!, a region in the
growth column can be trapped only if it has occupied sites or
bonds from both sides and this requires at least three vertical
lines of sites. In the open boundary condition case we will
get the same numerical results found for IP without trapping.
Now, for IP with trapping one can see~Fig. 9! that all paths
generating trapping contribute directly toMi ,1

cl .
In Table I we report the values of the fractal dimension vs

n for both types of trapping, and we compare them with
known simulation values. No previous analytical results are
available for IP with trapping. Also in this case our analytical
results fit very well with known values. In Fig. 10 we show
the behavior ofDf(n) versus 1/n

2, for IP, IP with site trap-
ping ~trapping I!, and IP with bond trapping~trapping II!,
with the extrapolation ton5`. The fact that theDf(n) fits
well with a power law 1/n2 can be understood@8# by the
large time limit of themk,t , which goes to zero withk as
1/(k11)2. In fact, the ‘‘older’’ bond in the growth column
has an age which coincides with the ordern of FST calcula-
tions.

The main reason for the relatively poor approximation of
our results for IP with site trapping~see Table I! is that,
while the FST scheme is based on a bond dynamical rule, as
suggested by Ref.@20#, in the site trapping model, we use a
site rule to identify trapped configurations. This trapping rule
is not expected to be scale invariant@20#, and it is therefore
natural that this inadequacy influences the numerical result.
Yet, the value we find might be considered as a nontrivial
lower bound toDf

I

E. The directed invasion percolation

In this part of the paper we study a directed version of IP,
the directed invasion percolation. The model is the same as
for IP, but with the following growth rule: att50 the active
bonds are the vertical upper bond and the horizontal right
bond leaving the siteO @Fig. 11~a!#. At t51 the active bond
with the smallest variable grows@the horizontal one in Fig.
11~a!#. After the growth, we add to the perimeter the upper
vertical bond and the right horizontal bond connected with
the just grown bond@Fig. 11~b!#. And so on.

From the dynamics we have defined it appears clear that
the DIP cluster, if one starts from siteO, will develop itself
entirely in a lattice quadrant with vertex inO and will have
as mean growth direction the quadrant bisector. We can ap-

ply to DIP the quenched-stochastic transformation, using the
RTS pk,t(x) and the GPDmk,t for the active bonds and the
updating rule for the RTS after a growth step, in the same
way as for IP. The difference with respect to IP is that DIP is
an anisotropic model, because it has a mean growth direc-
tion. In the same way as IP is the dynamical, invasive, ver-
sion of critical percolation, DIP can be viewed as the dy-
namical version of directed percolation~DP!.

Let us recall briefly the main properties of DP@26#. We
label the four directions on the lattice with the cardinal
points: east and west are the horizontal directions and north
and south the vertical ones. The positive directions are north
and east. We orient the bonds, assigning to each one an ar-
row, in the positive direction and, as for percolation, we
assign to each bond a random number. A thresholdp is fixed
and one introduces the probabilityP(A→B;p) to find a path
connecting two pointsA and B, composed by bonds with
random variables less thanp and following the arrows as-
signed to the bonds. For percolation, ifp,pc51/2 one has a
correlation lengthj}up2pcu2n, with critical exponentn.
For DIP we have an analogous situation with a different
critical thresholdpc

(dir)50.644 071.pc and, because of the
anisotropy of DIP, two correlation lengths:j uu , parallel to the
growth direction, andj' , perpendicular, with the following
scaling behavior forp,pc

(dir) :

j uu}~pc
~dir!2p!2n uu and j'}~pc

~dir!2p!2n',

with n uu.n' .
The DP clusters have the following properties:~1! for

p,pc
(dir)50.644 071 there is no percolating cluster;~2! for

p.pc
(dir) there is a percolating, infinite and compact, cluster

with fractal dimensionDf52; and~3! for p5pc
~dir! there is

an infinite percolating cluster with fractal dimension
Df51.748 . . . @27#. We claim that, as for IP, the DIP model
produces spontaneously an asymptotic structure with the
same geometrical properties of the infinite percolating cluster
of DP at the critical thresholdpc

(dir).
Indeed the RTS calculations of Ref.@8# can be applied to

the case of DIP as well. One can define a histogram function,
which is the histogramF t(x) of the values of the variables
on the perimeter bonds, and write down a histogram equation
like Eq. 15. The asymptotic behavior ofF t(x) will be

lim
t→`

F t~x!5
1

12pc
u~x2pc!, ~36!

where the parameterpc coincides with the DP threshold
pc
(dir)50.644 071@27#. This supports the hypothesis that be-

tween DIP and DP there is the same link existing between IP
and critical percolation.

Now we apply the FST approach to DIP to compute its
fractal dimension. The scale-invariant local dynamics can be
determined by the same arguments used for IP. What we find
is that the local dynamics to use in the FST growth column is
the same used for IP, Eqs.~23!–~25!, where we have to
substitutepc51/2 with pc

(dir)50.644 071.
In applying FST to DIP one has to face a technical prob-

lem. In fact, the FST analyzes the intersection between the
asymptotic structure and a line@6,7#. This intersection is a

FIG. 11. Starting situation for DIP:~a! the black dot indicates
C0 and the dotted segments indicate the active bonds;~b! the situa-
tion after the growth of the horizontal active bond.
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random Cantor set~Fig. 13! in which the weights of the
generators are determined from the dynamics of the model,
expressed by the FST matrix$Mi , j%. IP is an isotropic
growth model. So, the orientation of the line we intersect
with the structure is not relevant. For anisotropic systems,
like DBM which has a definite growth direction, the inter-
section is usually taken in the direction perpendicular to the
direction of growth @7#. The resulting random Cantor set
~fragmentation process! is therefore isotropic. In DIP, one
would have to tilt the lattice byp/4 in order to perform the
FST ‘‘along’’ the growth direction. This would pose prob-
lems of renormalization of a dynamics with diagonal bonds
which is known to be problematic@20#. For this reason we
choose to tilt the direction in which the FST evolves by
p/4, with respect to the growth direction~the FST evolves in
the north direction, whereas the growth direction is
northeast!. This choice has the price that the intersection
with a horizontal line will result now in an anisotropic Can-
tor set. This can be described by three generatorsC2, C1, and
C0 ~Fig. 13! satisfying the conditionC01C11C251.

So, we have three fundamental configurations on the in-
tersection set and the FST matrix$Mi , j% will be a 333 one:

S M0,0 0 M2,0

0 M1,1 M2,1

M0,2 M1,2 M2,2 ,
D , ~37!

whereM1,05M0,150 in that there cannot be a transition
between the 0 and 1 configurations, and with the following
normalization condition for the probabilities:
( j51
3 Mi , j51 for i51,2,3. In open boundary conditions one

hasM0,0
op51.

The fractal dimension is again given by

Df85
ln~11C2!

ln 2
, ~38!

whereC2 is the fixed point solution of Eq.~37!.
The probabilities for open and closed boundary conditions

in the open-closed approximation have to be obtained from
the void distributionP(anis)(l) of an anisotropic random
Cantor set, while for IP we used the usual void distribution
of an isotropic Cantor set@29#. In Appendix B we compute
the P~anis!(l) and report also the equation for the weights
Ci from which one gets the fixed point values. The results
are shown in Table I, and compared with known results.
Note that in passing from the dimension of the intersection
set to that of the cluster, one generally assumes that the frac-
tal is isotropic. This point might be nontrivial in DP. It is,
however, clear that in any case our result refers to an inter-
section of the cluster with a line at an angle ofp/4 with the
growth direction. Within this assumption of isotropy, this
value results in excellent agreement with that found for DP
(Df

DP51.748 . . . @27#!. This result, together with the asymp-
totic behavior of the DIP histogramF t(x), supports the hy-
pothesis that DIP is the self-organized dynamical version of
critical DP.

III. ANALYSIS OF THE CRITICAL
AVALANCHES FOR IP

In this section we will address the problem of the analysis
of the distribution of critical avalanches in invasion percola-
tion. We have seen in the preceding section that avalanches
have a hierarchical structure and that in the limitt→` their
duration~or size! depends only on the value of the random
variable of the initiator.

Until now the analysis of the size distribution of ava-
lanches has been based mainly on the combination of com-
puter simulation of the process and scaling ansatz obtained in
analogy with the distribution of clusters in usual percolation
@11,12#. Based on this analogy, the following functional form
for the size distribution is assumed:

D~s;p!5s2t f ~ up2pcuss!, ~39!

where p5« i and pc51/2 is the critical threshold for 2D
bond percolation on a square lattice. The functionf (x) has
the following properties: limx→0f (x)5aÞ0 and for large
values of x f(x);e2x. In @11,12#, by an analysis of the
temporal signal«(t) ~the value of the smallest variable at
time t) together with scaling relations the following values
of t have been obtained, respectively, by numerical simula-
tions: t.1.50 andt.1.60. This last value seems to be the
most recent and accurate.

The sizes of the avalanche also includes the initiator.
Thus the normalization condition for Eq.~39! will be

(
s51

`

D~s;p!51;pP@0,1#. ~40!

We now propose a theoretical scheme for the analytical cal-
culation of the avalanche exponentt, based on the RTS and
the FST ideas.

Usually Eq. ~39! holds true fors@1. However, if we
consider the dynamics at a certain scalel , we can use Eq.
~39! to describe the statistics of avalanches at that scale. In
this case, the normalized form of Eq.~39!, for p5pc is

D~s;pc!5
s2t

(
s51

`

s2t

. ~41!

Note that the denominator is the function Riemann zeta,
z(t). From Eq.~41!, valid if the initiator is atpc , one has

D~s51;pc!5
1

(
s51

`

s2t

5
1

z~t!
. ~42!

We will obtain a value oft by ~a! evaluating the left-hand
side using the scale-invariant local dynamics of IP and by
taking into account the boundary conditions near the ava-
lanche, and~b! inverting Eq.~42!.

Let us evaluateD(s51;pc). The events51 means that
after the growth of the initiator with variablepc the ava-
lanche stops. Thus we consider the initiatori as grown at
time t0 and calculate the probability that the avalanche stops
at timet011. This will happen if all the descendant bonds of
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the initiator have variables larger thanpc . In fact, if at least
one descendant ofi had variable lower thanpc , the ava-
lanche would continue because this variable would be the
minimum one on the whole perimeter. In order to evaluate
this probability accurately we need to take into account the
environment of the initiator. In Fig. 12 we schematize all the
possible boundary conditions for the initiator bond. We con-
sider only the nearest neighbor of the initiator because we
know that asymptotically the avalanches on the perimeter are
influenced only by the environment near the zone where the
avalanche evolves, that is to say, by other branches of the
aggregate which have some perimeter bonds involved in the
avalanche.

For all three cases we can evaluate the probability that the
avalanche stops immediately after the initiator8s growth,
conditioned by the assigned boundary conditions. The exact
value of this probability, by the rule of composed probabili-
ties, is given by the mean of the three cases. In order to
compute the statistical weights of configurations~a!–~c! of
Fig. 12 we use the void distributionP(l) of the random
~isotropic! Cantor set whose generators have probabilities
Ci , i51,2 given by the FST calculations performed in the
preceding section. We are allowed to useP(l) with the
weights obtained by FST because for IP the perimeter has
the same statistical properties as the bulk of the structure.

We remember the expression ofP(l50) @7# in terms of
C2:

P~l50!5
C2

C21
1

4
~12C2!~31C2!

. ~43!

The weights of configurations~a!, ~b!, and~c! are

W~a!5P~l>1!/P~l>1![@12P~l50!#2,

W~b!52P~l50!/@12P~l50!#,

W~c!5@P~l50!#2. ~44!

The fixed point value ofC2 obtained from FST calculation
for IP in the preceding section isC2.0.861. If we introduce
this value in Eqs.~43! and~44! we getP(l50).0.865, and

W~a!.0.018,

W~b!.0.233,

W~c!.0.749. ~45!

Now we compute the probabilitiesP(k)(s51;pc), k5a,b,c
that the avalanche stops immediately after the growth of the
initiator, for the three different boundary conditions, using
the RTS method. The descendants of the initiator have RTS
p0,0(x)51, because they have just entered in the perimeter.
So, one has

P~a!~s51;pc!5S E
pc

1

dx p0,0~x! D 35 1
8 ,

P~b!~s51;pc!5S E
pc

1

dx p0,0~x! D 25 1
4 ,

P~c!~s51;pc!5E
pc

1

dx p0,0~x!5 1
2 . ~46!

From Eqs.~46! one obtains

D~s51;pc!5 )
k5a,b,c

W~k!P~k!~s51;pc!.0.435. ~47!

At this point, in order to findt we should solve the equation

0.4355
1

(
s51

`

s2t

5
1

z~t!
. ~48!

FIG. 12. Boundary conditions for the initiator of an avalanche
when the initiator bond grows.d indicates the cluster sites and
s the perimeter ones: the filled segments represent grown bonds
and the dotted ones the descendant of the initiator. One has three
possibilities:~a! there is no occupied site near to the initiator8s one
~three descendant bonds!; ~b! there is one occupied site near the
initiator ~two descendants!; ~c! both sites near the initiator are oc-
cupied~one descendant!.

FIG. 13. Fragmentation procedure for the anisotropic random
Cantor set. One starts from the system at the biggest scale, appear-
ing as an occupied unitary cell of lengthL ~we setL51) and one
proceeds by successive fragmentations governed by the weights
Ci of the three generators. For the isotropic case the only difference
is that we have only two generators, in that one hasC05C1.
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The numerical solution of Eq.~48! gives

t51.5832. . . .

This analytical result is in good agreement with recent nu-
merical simulations@12#, which givet51.60.

In order to test independently the validity of our method,
we have performed numerical simulations of IP to get an
estimation oft. From the RTS scheme and the discussion of
the scale-invariant local dynamics and critical avalanches,
we observe that the counteru(t01s) ~the age! of the bonds
growing during the avalanche must satisfy the following
condition:

u~ t01s!,s, ~49!

wheret0 is the time at which the avalanche starts@23#.
So, if we are in the asymptotic limit~very large time!, we

can analyze the signalu(t), instead ofe(t), in order to re-
construct the avalanche size distribution and to obtain nu-
merical estimation of the exponentt. This is an alternative
method that allows us to count only the critical avalanches,
avoiding problems of numerical approximations that one
faces when one analyzes the signale(t). In fact,e(t) is a real
random variable, whileu(t) is an integer one. We get
t.1.6060.03, in very good agreement with our theoretical
result. From the knowledge of the exponentsDf and t one
can recover, using the scaling relations reported in@12#, all
the other critical exponents of IP.

CONCLUSIONS

In this paper we have exploited a theoretical method, the
run time statistics, to study analytically quenched growth
models. Those models are characterized by quenched noise
and extremal statistics.

The application of this method, together with other tools
such as the FST@20# or the real space RG@10#, allows us to
get very good estimations for the scaling exponents. Here we
have considered explicitly the cases of invasion percolation
and directed invasion percolation, to which we applied the
FST technique@7# to obtain the fractal dimensionDf of the
clusters of IP, IP with trapping, and DIP. In particular,
nonlocal effects like that of trapping, which poses insur-
mountable difficulties to other approaches, can be dealt with
in a remarkably accurate way. The results of the FST calcu-
lation, apart from the case of site trapping~and for reasons
which are easily understood!, all display a remarkable accu-
racy: the deviation from the accepted result being at most
0.5%. The present approach therefore provides a first prin-
ciple analytical framework to understand self-organization
and to compute the various critical exponents for the ex-
tremal problems.

In addition, we have shown that the scale-invariant dy-
namics allows us to evaluate also the avalanche size distri-
bution exponentt that we computed in detail for the case of
IP. This method could in principle be applied also to the
computation of the avalanche exponent of DIP, but at the
moment we have to solve some problems related to the pe-
culiar, asymmetric distribution of boundary conditions of
DIP.

The theoretical methods presented in this paper open two

research directions. From one side a deeper understanding of
the mathematical properties of the RTS would be most wel-
come. As we have shown, the RTS provides only an approxi-
mation on the statistical weight of quenched processes. The
main question concerns whether or not the error in thisin-
trinsic approximation becomes negligible as the length of the
process increases. In the affirmative case, one would also
like to have a control on the magnitude of this error. We are
actively investigating this problem@8,13#. Another interest-
ing problem is to see if it is possible to define the RTS for
quenched dynamics different from the extremal dynamics. A
step forward for ‘‘equilibrium’’ disordered systems has been
recently made@29#.

On the other hand, one can extend the RTS approach to
other models such as surface dynamics with quenched disor-
der, where the extremal dynamics is combined with surface
tension effects@5#, or to models where the quenched disorder
is coupled to a spatial field. The prototype of the latter situ-
ation is quenched DBM~QDBM! @2,3#, where the extremal
dynamics applies to a combination of the disorder field
~which acts as a random threshold! and the electric field. The
main interest in such a model lies in the fact that phenomena
like fracture propagation in crystals are conditioned both by
quenched factors~defects and microcracks! and by time-
dependent factors~electric fields, strain!. Significant
progress, which we plan to present in the future, has also
been made in this direction.

APPENDIX A: DERIVATION OF THE RTS EQUATIONS

In this appendix we compute explicitly the expressions
~7!–~9!. Let us recall some properties of a set of continuous
independent random variables. Given a set of variables
$X1 ,X2 , . . . ,XN% and their probability densities
$p1(x1),p2(x2), . . . ,pN(xN)%, we fix an order relation such
as, for example,X1,X2,•••,XN . The probabilities to
have such an ordering between the variables are

Prob@~x1<X1<x11dx1!ù~X1,X2,•••,XN!#

5dx1p1~x1!E
x1

1

dx2p2~x2!•••E
xN21

1

dxNpN~xN! ~A1!

for X1P@x,x1dx# and

Prob~X1,X2,•••,XN!

5E
0

1

Prob@~x1<X1<x11dx1!ù~X1,X2,•••,XN!#

~A2!

for X1P@0,1#. Equation~A1! expresses the effective density
for the variableX1 conditional to the given order relation,
while Eq. ~A2! is the total probability to have the order re-
lation X1,X2,•••,XN .

Using Eqs.~A1! and ~A2! we can compute the following
probability:
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Prob@~x1<X1<x11dx1!ù~X15 min
m5 l , . . .N

Xm!#

5dx1p1~x1! (
$p2 , . . . ,pN%

F E
x1

1

dxp2pp2~xp2!•••

3E
xpN21

1

dxpNppN~xpN!G , ~A3!

where the sum is over all permutations of the ordered set
$2, . . . ,N% and

Prob~x15 min
m51, . . . ,N

Xm!

5E
x150

x151

Prob@~x1<X1<x11dx1!

ù~X15 min
m51, . . . ,N

Xm!#. ~A4!

Equation ~A3! represents the probability that the variable
X1, with value ranging betweenx andx1dx, is the smallest
in the set, independently of the ordering of the others. Equa-
tion ~A4! is instead the probability thatX1 will be the mini-
mum one irrespective of its value. At this point one can
demonstrate by induction that

(
$p2 , . . . ,pN%

F E
x1

1

dxp2pp2~xp2!•••ExpN21

1

dxpNppN~xpN!G
5 )

m52

N E
x1

1

dxmpm~xm!. ~A5!

The result of Eq.~A5! may appear trivial. However, in more
complex cases it is important to keep the formalism general.

Introducing Eq.~A5! into Eqs.~A3! and ~A4! one gets

Prob@~x1<X1<x11dx1!ù~X15 min
m51, . . . ,N

Xm!#

5dx1p1~x1! )
m52

N E
x1

1

dxmpm~xm! ~A6!

and

Prob~X15 min
m51, . . . ,N

Xm!

5E
0

1

dx1p1~x1! )
m52

N E
x1

1

dxmpm~xm!. ~A7!

In invasion percolation a bond grows at timet if its variable
is the minimum one at that time. So, using Eq.~A6! we can
write

Prob„t;~x<e i<x1dx!~e i5 min
mP]Ct

em!…

5dxr i ,t~x! )
mP]Ct2$ i %

E
x

1

rm,t~y!dy ~A8!

or, in terms of thepk,t(x),

Prob„t;~x<e i<x1dx!ù~e i5 min
mP]Ct

em!…

5dx pk,t~x!)
u

@12Pu,t~x!#nu,t2du,k, ~A9!

wherePu,t(x)5*0
xdypu,t(y) and the Kronecker delta means

that the product is over all the variables but the growing one.
Integrating Eq.~A9! one can finally write the growth

probabilitymk,t for the bondi at time t @8#:

mk,t[Prob~ t;e i5 min
mP]Ct

em!

5E
0

1

dxpk,t~x!)
u

@12Pu,t~x!#nu,t2du,k. ~A10!

For the computation of the density of the smallest random
variablemk,t(x) after it has grown we use the rule of condi-
tional probability, which we recall here:

Prob~AuB!5
Prob~AùB!

Prob~B!
, ~A11!

where A[(x<e i<x1dx) and B[(e i5minmP]Ctem). One
has

mk,t~x!dx[Prob„t;~x<e i<x1dx!u~e i5 min
mP]Ct

em!…

5

Prob„t;~x<e i<x1dx!ù~e i5 min
mP]Ct

em!…

Prob~ t;e i5 min
mP]Ct

em!

5S dxpk,t~x!)
u

@12Pu,t~x!#nu,t2du,kD2mk,t

~A12!

and finally

mk,t~x!5

pk,t~x!)
u

@12Pu,t~x!#nu,t2du,k

mk,t
. ~A13!

In the same way we can calculate the effective densities of
the ‘‘surviving’’ perimeter bondsr i ,t11(x)[pu11,t11(x),
where the events A and B are, respectively,
A[(x<e j<x1dx) andB[(e i5minmP]Ctem):

Prob~ t11;x<e j<x1dx!5dxpu11,t11~x![dxr j ,t11~x!.
~A14!

But,

Prob~ t11;x<e j<x1dx!

5Prob„t;~x<e j<x1dx!u~e i5 min
mP]Ct

em!…

5

Prob„t;~x<e j<x1dx!ù~e i5 min
mP]Ct

em!…

Prob~ t;e i5 min
mP]Ct

em!
. ~A15!
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The numerator of~64! can be written as

Prob„t;~x<e j<x1dx!ù~e i5 min
mP]Ct

em!…

5dx r j ,t~x!E
0

x

dyr i ,t~y! )
mP]Ct2$ i , j %

S E
y

1

durm,t~u! D
[dxpu,t~x!E

0

x

dyFpk,t~y!)
z

@12Pz,t~y!#nz,t2dz,k2dz,uG
~A16!

while the denominator ismk,t . So we have

pu11,t11~x!5
1

mk,t
Fpu,t~x!E

0

x

dyS pk,t~y!

3)
z

@12Pz,t~y!#nz,t2dz,k2dz,uD G .
~A17!

Or, using~8!:

pu11,t11~x!5pu,t~x!E
0

x mk,t~y!

@12Pu,t~y!#
dy. ~A18!

APPENDIX B: VOID DISTRIBUTION
FOR AN ANISOTROPIC RANDOM CANTOR SET

In this appendix we derive the expression for the void
distributionP(l50) of an anisotropic random Cantor set in
terms of theCi .

As for the isotropic case@29# we start from the system at
the biggest scale, coinciding with a single occupied unitary
cell of lengthL, and proceed to a fragmentation into two
consecutive cells with probability distribution given by the
weightsC0 ,C1 ,C2 ~Fig. 13!, with the conditions

C01C11C251,

Ci.0 for i51,2,3. ~B1!

After n steps of fragmentation the unitary cell will have a
length (1/2)n3L. For the sake of simplicity we fixL51.
Now we measure the voids aftern iterations in units of
(1/2)n. Let us callNl

(n) the number of clusters of points of
length l after n iterations andVl

(n) the number of voids of
length l . The quantity we have to compute is the conditional
probabilityP(l) that, given an occupied unitary cell, it has
at its left ~or right! side a void of lengthl . Even if we have
asymmetric generators, we will see thatP(l) is the same for
left-hand and right-hand voids.

Because of the self-similarity of the Cantor set one has
@29#

P~l!5 lim
n→`

Vl
~n!

(
l51

`

lNl
~n!

. ~B2!

We are interested only inP(l50), that is, the probability
that given an occupied unitary cell it is followed by another
occupied cell. One can show that@29#

P~l50!5 lim
n→`

(
l

~ l21!Nl
~n!

(
l

lNl
~n!

512 lim
n→`

(
l
Nl

~n!

(
l
lNl

~n!

.

~B3!

Until now our discussion is valid for both the isotropic and
the anisotropic case. Now we proceed to compute the limit in
Eq. ~B3!.

The denominator of the fraction in Eq.~B3! can be writ-
ten as

(
l
lNl

~n11!5~C01C1!(
l
lNl

~n!12C2(
l
lNl

~n!

5~11C2!(
l
lNl

~n! , ~B4!

where the last member of Eq.~B4! is due to the first relation
in ~B1!. This expression is clearly invariant under the ex-
change ofC0 with C1 and vice versa.

So, we get the same expression for left and right voids.
The numerator of the fraction in the last member is instead,
for right-hand voids,

(
l
Nl

~n11!5(
l
Nl

~n!@11~ l21!C11~ l21!C0~C01C2!#.

~B5!

The corresponding expression for left-hand voids is

(
l
Nl

~n11!5(
l
Nl

~n!@11~ l21!C01~ l21!C1~C11C2!#.

~B6!

Because of the conditionC01C11C251 Eqs. ~B5! and
~B6! coincide.

IntroducingC0512C12C2 in Eq. ~B5!,

(
l
Nl

~n11!5(
l
Nl

~n!@11~ l21!~12C12C21C1C2

1C1
2!#. ~B7!

So, we have

(
l
Nl

~n11!

(
l
lNl

~n11!

5
12C12C21C1C21C1

2

11C2

1
C11C22C1C22C1

2

11C2

(
l
Nl

~n!

(
l
lNl

~n!

.

~B8!
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Taking the limitn→` for both sides of Eq.~B8! we obtain

P~l50!5
C2

12C11C1C21C1
2 . ~B9!

Equation~B9! can be used in the FST calculations for DIP.
We have to solve the following system@29,6,7#:

S C0

C1

C2

D 5S M0,0 M1,0 M2,0

M0,1 M1,1 M2,1

M0,2 M1,2 M2,2

D S C0

C1

C2

D , ~B10!

with the conditions~B1! and( j51
3 Mi , j51 for i51,2,3. The

three equations in~B10! are not independent. We can drop
one of them and use the normalization condition for the
Ci . From the dynamical DIP8s rules one infers that, indepen-

dently from the boundary conditions, one has
M1,05M0,150 and in open conditions one has also
M0,2

op51 ~this is a manifestation of the asymmetry of the
model!.

The expression for the FST matrix elements in the open-
closed approximation is@6,7#:

Mi , j5P~l50!Mi , j
cl 1@12P~l50!#Mi , j

op , ~B11!

whereP(l50) is given by~B9!. If we introduce Eqs.~B11!,
~B9! into the linear system~B10! we obtain a nonlinear sys-
tem inCi . Such a system admits the trivial solutionC051
andC15C250. This solution cannot be accepted in view of
the conditions~B1! for Ci . The other solutions are given by
the system

2M1,2
op~C12C1

21C1
3!1

12M2,0
op2M0,0

cl 1~M0,0
cl 1M2,0

op21!C12M2,0
opC1

2

11M2,0
cl 2M2,0

op2M0,0
cl 1M2,0

opC1
SM2,1

op1~M1,2
op2M1,2

cl 2M2,1
op !C11~M2,1

op2M1,2
op !C1

2

1~M2,1
cl 2M2,1

op1M2,1
op !C1

12M2,0
op2M0,0

cl 1~M0,0
cl 1M2,0

op21!C12M2,0
opC1

2

11M2,0
cl 2M2,0

op2M0,0
cl 1M2,0

opC1
D 50, ~B12!

C25
12M2,0

op2M0,0
cl 1~M0,0

cl 1M2,0
op21!C12M2,0

opC1
2

11M2,0
cl 2M2,0

op2M0,0
cl 1M2,0

opC1
.

The first equation cannot be solved analytically. We solved it using the Newton’s contractions method and accepting only the
solutions satisfying the constraintCi.0. The solution of the system~B12! leads to the results of Table I@31,32#.
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